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We present a simple and new method of constructing superdistributions on superspace
over a Grassmann-Banach algebra, which close to the de Rham’s “currents” defined
as dual objects to differential forms. The paper also contains the extension of the
Hörmander’s description of the singularity structure (wavefront set) of a distribution to
include the supersymmetric case.
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1. INTRODUCTION

In this work, we extend the definition of the objects most widely used in
physics: distributions. The distribution theory is a generalization of the classical
analysis, which makes it possible to deal in a systematic way difficulties as the
unpleasant fact that not every function is differentiate. As a matter of fact, the
space of distributions is essentially the smallest extension of the space of con-
tinuous functions where differentiation is always well defined. The theory was
intensively developed by many mathematicians and theoretical physicists, mainly
in connection with the needs of theoretical and mathematical physics. It one relies
fundamentally on the notion of topological vector spaces. The Quantum Field
Theory (QFT) perhaps is the example more important where technical results
from distribution theory are required. In particular, Schwartz’s theory of tempered
distributions became fundamental to the Gårding-Wigthman axiomatization of
relativistic QFT (Streater and Wightman, 1989; Bogoliubov et al., 1990). In the
same way the Fourier analysis of distributions plays an important role in the QFT,
mainly in the spectral analysis of singularities. With this paper, we intend to define
superdistributions and Fourier transformations in the supersymmetric field theory
in the spirit of Schwartz’s distributions and in the spirit of Hörmander’s spectral
analysis of singularities of distributions.
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Over the last decades, supersymmetric quantum theories have been studied
intensively with the belief that such theories may play a part in a unified theory
of fundamental forces, and many issues are understood much better now. These
theories are usually characterized by their invariance properties with respect to
transformations that involve anticommuting parameters. The latter play an essen-
tial role in the formulation of supersymmetric theories and their use sometimes
facilities calculations, for instance in perturbation theory. As it occurs with the
ordinary quantum field theories, supersymmetric field theories are also deeply con-
nected to the presence of ultraviolet divergences, in a naive approach. However,
physicists have soon learned how to make sense out of them in a mathematically
proper way through the procedure now known as renormalization (a comprehen-
sive account of the quantum theory through the algebraic renormalization approach
can be found in the textbook by Piguet and Sibold (1986)). As first indicated by
Wess and Zumino, supersymmetry is preserved by renormalization and further
leads to a less divergent than conventional field theoretic model.

It is already well-known that the singularity structure of Feynman (or more
precisely Wightman) superfunctions is completely associated with the “bosonic”
sector of the superspace - the body of superspace. This result can be mainly justi-
fied by the heuristic form of defining superspace and superfields. It is, therefore, a
natural question to ask how a mathematically rigorous definition of the structure
of these singularities can be given. Although claims exist that such a result is
completely obvious, we do not think that a clear proof is available in the pub-
lished literature, to the best of our knowledge. However, to our great surprise,
such a proof does exist and is extremely simple. The key ingredients in our anal-
ysis are the notion of the wavefront set (Hörmander, 1990, 1971; Duistermaat
and Hörmander, 1972) of a superdistribution and the appropriate construction of
Rogers of a superspace and superfields (Rogers, 1980). The notion of wavefront set
was introduced by the mathematicians Hörmander and Duistermaat (Hörmander,
1971; Duistermaat and Hörmander, 1972) in the seventies and it is growing of
importance, with a range of applications going beyond the original problems of
linear partial equations. It has received, in the last years, a lot of attention from
community of theoretical physicists in order to solve some important problems,
such as the characterization of the spectral condition for a QFT on a general
manifold (Radzikowski, 1992; Brunetti et al., 1996).

This note is organized as follow: in Section 2, for the convenience of readers,
we shall briefly review some few basic properties of superspaces based on the
Rogers’ work (Rogers, 1980). In Section 3, a new formulation of superdistributions
on superspace is presented.2 Such a formulation close to the de Rham’s “currents”
defined as dual objects to differential forms (De Rham, 1960). In Section 4, we

2 An alternative formulation of superdistributions is given in the Ref. (Nagamachi and Kobayashi,
1988).
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extend the notion of the wavefront set of a superdistribution. The well-known
result that the singularities of a superdistribution may be expressed in a very
simple way through the ordinary distribution is proved by functional analytical
methods. Section 5 contains our conclusions. Finally, for sake of completeness, in
the Appendix A we recall some properties of the microlocal analysis.

2. NOTIONS OF SUPERSPACE

This section introduces some few basic fundamentals on the theory of su-
perspace. We follow here the work of Rogers (Rogers, 1980). Rogers’ theory
has an advantage, a superspace is an ordinary Banach manifold endowed with a
Grassmann algebra structure, so that the topological constructions have their stan-
dard meanings.

We start by introducing first some definitions and concepts of a Grassmann-
Banach algebra, i.e., a Grassmann algebra endowed with a Banach algebra struc-
ture. Let L be a finite positive integer. Denote by G a Grassmann algebra, such
that G can naturally be decomposed as the direct sum G = G0 ⊕ G1, where G0

consists of the even (commuting) elements and G1 consists of the odd (anti-
commuting) elements in G, respectively. Let ML denote the set of sequences
{(µ1, . . . , µk)|1 ≤ k ≤ L; µi ∈ N; 1 ≤ µ1 < · · · < µk ≤ L}. Let � represent the
empty sequence in ML, and (j ) denote the sequence with just one element j . A
basis of G is given by monomials of the form {ξ�, ξµ1ξµ2, . . . , ξµ1ξµ2 · · · ξµk } for
all µ ∈ ML, such that ξ� = I and ξ (i)ξ (j ) + ξ (j )ξ (i) = 0 for 1 ≤ i, j ≤ L. Futher-
more, there is no other independent relations among the generators. By GL we
denote the Grassmann algebra with L generators, where the even and the odd
elements, respectively, take their values. L being assumed a finite integer (the
number of generators L could be possibly infinite), it means that the sequence
terminates at ξ 1 . . . ξL and there are only 2L distinct basis elements. An arbitrary
element q ∈ GL has the form

q = qb +
∑

(µ1,...,µk)∈ML

qµ1,...,µk
ξµ1 . . . ξµk , (2.1)

where qb, qµ1...µk
are real numbers. An even or odd element is specified by 2L−1

real parameters. The number qb is called the body of q, while the remainder q − qb

is the soul of q, denoted s(q). The element q is invertible if, and only if, its body
is non-zero.

With reference to supersymmetric field theories, the commuting variable x

has the form

x = xb + xij ξ
iξ j + xijklξ

iξ j ξ kξ l + · · · , (2.2)
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where xb, xij , xijkl, . . . are real variables. Similarly, the anticommuting variables
(in the Weyl representation) θ and θ̄ = (θ )∗ have the form

θ = θiξ
i + θijkξ

iξ j ξ k + · · · , θ̄ = θ̄iξ
i + θ̄ijkξ

iξ j ξ k + · · · , (2.3)

where θi, θijk, . . . are complex variables. The summation over repeated indices
is to be understood unless otherwise stated. As pointed out by Vladimirov and
Volovich (1984), from the physical point of view, superfields are not functions
of θi, θijk, . . . and xb, xij , xijkl, . . ., but only depend on these variables through θ

and x, as it occurs with ordinary complex analysis where analytic functions of the
complex variables z = x + iy are not arbitrary functions of the variables x and y,
but functions that depend on x and y through z.

The Grassmann algebra may be topologized. Consider the complete norm on
GL defined by Rudolph (2000):

‖q‖p =
⎛

⎝|qb|p +
L∑

(µ)=1

|qµ1...µk
|p

⎞

⎠
1/p

. (2.4)

A useful topology on G is the topology induced by this norm. The norm ‖ · ‖1

is called the Rogers norm and GL(1) the Rogers algebra (Rogers, 1980). The
Grassmann algebra G equipped with the norm (2.4) becomes a Banach space.
In fact G becomes a Banach algebra, i.e., ‖I‖ = 1 and ‖qq ′‖ ≤ ‖q‖‖q ′‖ for all
q, q ′ ∈ G.

Definition 2.1. A Grassmann-Banach algebra is a Grassmann algebra endowed
with a Banach algebra structure.

A superspace must be constructed using as a building block a Grassmann-
Banach algebra GL and not only a Grassmann algebra.

Definition 2.2. Let GL = GL,0 ⊕ GL,1 be a Grassmann-Banach algebra. Then the
(m, n)-dimensional superspace is the topological space Gm,n

L = Gm
L,0 × Gn

L,1 which
generalizes the space R

m, consisting of the Cartesian product of m copies of the
even part of GL and n copies of the odd part.

In supersymmetric quantum field theory, superfields are functions in super-
space usually given by their (terminating) standard expansions in powers of the
odd coordinates

F (x, θ, θ̄ ) =
�∑

(γ )=0

f(γ )(x)(θ )(γ ), (2.5)

where (θ )(γ ) comprises all monomials in the anticommuting variables θ and θ̄

(belonging to odd part of a Grassmann-Banach algebra) of degree |γ |; f(γ )(x) is
called a component field, whose Lorentz properties are determined by those of
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F (x, θ, θ̄ ) and by the power (γ ) of (θ ). The following notation, extended to more
than one θ variable, is used (2.5): (θ ) = (θ1, θ̄1, . . . , θn, θ̄n), and (γ ) is a multi-
index (γ1, γ̄1, . . . , γn, γ̄n) with |γ | = ∑n

r=1(γr + γ̄r ) and (θ )(γ ) = �m
r=1θ

γr
r θ̄

γ̄r
r . In

Eq. (2.5), for a (4,4)-dimensional superspace, � = (2, 2).
Rogers (Rogers, 1980) considered superfields in Gm,n

L as G∞ superfunctions,
i.e., functions whose coefficients f(γ )(x) of their expansions are smooth functions
of R

m into GL, extended from R
m to all of Gm,0

L by z-continuation. Throughout
the remainder of this paper the prefix “super” is used for entities involving odd
Grassmann variables.

Definition 2.3. Let U be an open set in Gm,0
L and ε : Gm,0

L → R
m be the body

projection which associates to each m-tuple (x1, . . . , xm) in Gm,0
L the m-tuple

(ε(x1), . . . , ε(xm)) in R
m. Let V be an open set in R

m with V = ε(U ). We get
through z-continuation – or “Grassmann analytic continuation” – of a function
f ∈ C∞(V,GL) a function z(f ) ∈ G∞(U,GL), which admits an expansion in
powers of the soul of x

z(f )(x1, . . . , xm) =
L∑

i1=···=im=0

1

i1! · · · im!

[
∂

i1
1 · · · ∂im

m

]
f (ε(x))s(x1)i1 · · · s(xm)im ,

where s(xi) = (xi − ε(xi)) and ε(xi) = (xi)b.
One should keep always in mind that the continuation involves only the even

variables z : C∞(ε(U )) → G∞(U ), and that z(f )(x1, . . . , xm) is a supersmooth
function if their components are smooth for soulless values of x. This justifies the
formal manipulations in the physics literature, where superfields are manipulated
as if their even arguments were ordinary numbers (Rabin, 1985, 1986): a super-
smooth function is completely determined when its components are known on the
body of superspace.

According to Definition 2.3, the superfield F (x, θ, θ̄ ) ∈ G∞(U,GL) admits
an expansion

F (x, θ, θ̄ ) =
�∑

(γ )=0

z(f(γ ))(x)(θ )(γ ),

but here with suitable f(γ ) ∈ C∞(ε(U ),GL).

3. DISTRIBUTIONS ON THE SUPERSPACE

We begin by introducing the concept of superdistributions as the dual space of
supersmooth functions in Gm,0

L , with compact support, equipped with an appropri-
ate topology, called test superfunctions. This can be done relatively straightforward
in analogy to the notion of distributions as the dual space to the space C∞

0 (U ) of
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functions on an open set U ⊂ R
m which have compact support, since the spaces

Gm,0
L and Gm,n

L are regarded as ordinary vector spaces of 2L−1(m) and 2L−1(m + n)
dimensions, respectively, over the real numbers.

Let � ⊂ R
m be an open set. � = ε(U ) regarded as a subset of Gm,0

L , it is
identified with the body of some domain in superspace. Let C∞

0 (�,GL) be the
space of GL-valued smooth functions with compact support in GL. Every function
f ∈ C∞

0 (�,GL) can be expanded in terms of the basis elements of GL as:

f (x) =
∑

(µ1,...,µk)∈M0
L

fµ1,...,µk
(x)ξµ1 · · · ξµk , (3.1)

where M0
L

def= {(µ1, . . . , µk)|0 ≤ k ≤ L; µi ∈ N; 1 ≤ µ1 < · · · < µk ≤ L} and
fµ1,...,µk

(x) is in the space C∞
0 (�) of real-valued smooth functions on � with

compact support. Thus, it follows that the space C∞
0 (�,GL) is isomorphic to the

space C∞
0 (�) ⊗ GL (Nagamachi and Kobayashi, 1988). In accordance with the

Definition 2.3, the smooth functions of C∞
0 (�,GL) can be extended from � ⊂ R

m

to U ⊂ Gm,0
L by Taylor expansion.

In order to define superdistributions, we need to give a suitable topological
structure to the space G∞

0 (U,GL) of GL-valued superfunctions on an open set
U ⊂ Gm,0

L which have compact support. According to a proposition by Rogers,
every G∞ superfunction on a compact set U ⊂ Gm,0

L can be considered as a real-
valued C∞ function on U ⊂ R

N , where N = 2L−1(m), regarding Gm,0
L and GL

as Banach spaces. In fact, the identification of Gm,0
L with R

2L−1(m) is possible
(Catenacci et al., 1985). We have here an example of functoriality. Indeed, let X

and Y denote a G∞ supermanifold and a Banach manifold C∞ , respectively. Then
with each supermanifold X we associate a Banach manifold Y , via a covariant
functorial relation λ : X → Y , and with each G∞ map φ defined on X, a C∞ map
λ(φ) defined on Y (Catenacci et al., 1985).

Following, we shall first consider only the subset C∞
K of C∞

0 (U ⊂ R
N ) which

consists of functions with support in a fixed compact set K . Since by construction
C∞

K is a Banach space, the functions C∞
K have a natural topology given by the

finite family of norms

‖φ‖K,m = sup
|p|≤m

x∈K

|Dpφ(x)|, Dp = ∂ |p|

∂x
p1
1 · · · ∂x

pm
m

, (3.2)

where p = (p1, p2, . . . , pm) is a m-tuple of non-negative integers, and |p| =
p1 + p2 + . . . + pm defines the order of the derivative. Next, let U be considered
as a union of compact sets Ki which form an increasing family {Ki}∞i=1, such
that Ki is contained in the interior of Ki+1. That such family exist follows from
the Lemma 10.1 of (Treves, 1967). Therefore, we think of C∞

0 (U ⊂ R
N ) as

∪iC
∞
Ki

(U ⊂ R
N ). We take the topology of C∞

0 (U ⊂ R
N ) to be given by the strict
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inductive limit topology of the sequence {C∞
Ki

(U ⊂ R
N )}. Of another way, we

may define convergence in C∞
0 (U ⊂ R

N ) of a sequence of functions {φk} to mean
that for each k, one has supp φk ⊂ K ⊂ U ⊂ R

N such that for a function φ ∈
C∞

0 (U ⊂ R
N ) we have ‖φ − φk‖K,m → 0 as k → ∞. This notion of convergence

generates a topology which makes C∞
0 (U ⊂ R

N ), certainly, a topological vector
space.

Now, let F and E be spaces of smooth functions with compact support defined
on U ⊂ Gm,0

L and U ⊂ R
N , respectively. If λ : E → F is a contravariant functor

which associates with each smooth function of compact support in E, a smooth
function of compact support in F, then we have a map

‖φ‖K,m −→ ‖λ(φ)‖K,m, (3.3)

providing G∞
0 (U,GL) with a limit topology induced by a finite family of norms.

We now take a result by Jadczyk and Pilch (1981), later refined by Hoyos
et al. (1984), which establishes as a natural domain of definition for supersmooth
functions a set of the form ε−1(�), where � is open in R

m. Let ε−1(�) be the
domain of definition for a superfunction f ∈ G∞

0 (ε−1(�),GL), where ε−1(�) is an
open subset in Gm,0

L and � is an open subset in R
m, and let φ̃ ∈ C∞

0 (�,GL) denotes
the restriction of φ to � ⊂ R

m ⊂ Gm,0
L . Then, it follows that (∂p1

1 · · · ∂pm
m φ)∼ =

∂
p1
1 · · · ∂pm

m φ̃, where the derivatives on the right-hand side are with respect to m

real variables. Now, suppose � = ∪i K̃i where each K̃i is open and has compact
closure in K̃i+1. It follows that C∞

0 (�,GL) = ∪iC
∞
K̃i

(�,GL). Then, one can give
C∞

0 (�,GL) a limit topology induced by finite family of norms (Nagamachi and
Kobayashi, 1988)

‖φ̃‖K̃,m = sup
|p|≤m

x∈K̃

|Dpφ̃(x)| = sup
|p|≤m

x∈K̃

⎧
⎨

⎩
∑

(µ1,...,µk)∈M0
L

|Dpφ̃µ1,...,µk
(x)|

⎫
⎬

⎭ . (3.4)

Finally, a suitable topological structure to the space G∞
0 (U,GL) of GL-valued

superfunctions on an open set U ⊂ Gm,n
L which have compact support, it is ob-

tained immediately by the natural identification of Gm,n
L with R

2L−1(m+n) and by
the obvious extension of the construction above, which allows us define a limit
topology induced to the space G∞

0 (U,GL) by finite family of norms,

‖λ(φ)‖K,m+n = sup
|p|≤m+n

z∈K

|Dp(λ(φ))(z)|, Dp = ∂ |q|+|r|

∂x
q1
1 · · · ∂x

qm
m ∂θ

r1
1 · · · ∂θ

rn
n

(3.5)

where the derivatives ∂ |q|/∂x
q1
1 · · · ∂x

qm
m commute while the derivatives

∂ |q|/∂θ
r1
1 · · · ∂θrn

n anti-commute, and |p| = |q| + |r| = ∑m
i=1 qi + ∑n

j=1 rj de-
fines the total order of the derivative, with rj = 0, 1.

We are now ready to define a superdistribution in an open subset U of Gm,n
L .

The set of all superdistributions in U will be denoted by D
′(U ). A superdistribution
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is a continuous linear functional u : G∞
0 (U ) → GL, where G∞

0 (U ) denotes the test
superfunction space of G∞(U ) superfunctions with compact support in K ⊂ U .
The continuity of u on G∞

0 (U ) is equivalent to its boundedness on a neighbourhood
of zero, i.e., the set of numbers u(φ) is bounded for all φ ∈ G∞

0 (U ). The last
statement translates directly into:

Propoition 3.1. A superdistribution u in U ∈ Gm,n
L is a continuous linear func-

tional on G∞
0 (U ) if and only if to every compact set K ⊂ U , there exists a constant

C and (m + n) such that

|u(φ)| ≤ C sup
|p|≤m+n

z∈K

|Dp(φ)(z)|, φ ∈ G∞
0 (K).

Proof: See Ref. Franco and Polito (2004) �

4. WAVEFRONT SET OF A SUPERDISTRIBUTION

A great deal of progress has been made in recent years in characterizing the
“ultraviolet divergences” of quantum fields in curved spacetime and developing
renormalization theory for interacting quantum fields by the use of the methods
of “microlocal analysis.” This leads to the definition of the wavefront set, denoted
(WF ), of a distribution, a refined description of the singularity spectrum. Similar
notion was developed in other versions by (Sato, 1969), (Iagolnitzer, 1975) and
(Sjöstrand, 1982). The definition as known nowadays is due to Hörmander. He
used this terminology due to an existing analogy between his studies on the
“propagation” of singularities and the classical construction of propagating waves
by Huyghens. For a distribution u we introduce its wavefront set WF (u) as a
subset in phase space R

n × R
n.3 We shall be thinking of points (x, k) in phase

space as specifying those singular directions k of a “bad” behaviour of the Fourier
transform û at infinity that are responsible for the non-smoothness of u at the
point x in position space. So we shall usually want k �= 0. A relevant point is that
W F (u) is independent of the coordinate system chosen, and it can be described
locally.

It is well-known that the regularity properties of a distribution are in cor-
respondence with the decay properties of its Fourier transform (see Appendix A
for details). The results which now follow prove that the decay properties of a
superdistribution at infinity and the smoothness properties of its Fourier transform
are analogous to the case of ordinary distributions, i.e., no new singularity appear
by taking into account the structure of the superspace.

3 The functorially correct definition of phase space is R
n × (Rn)∗. We shall here ignore any attempt to

distinguish between R
n and (Rn)∗.
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Lemma 4.1. Let X ⊂ Gm,0
L be an open set, and u be a superdistribution on

X taking values in GL, i.e., a linear functional u : G∞
0 (X) → GL. Let φ be a

supersmooth function with compact support K ⊂ X. Then φu is also supersmooth
on K, if its components (φu)(ε(x)) are smooth on a compact set K ′ ⊂ �, where �

is the body of superspace. Therefore, the following estimate holds:

|φ̂u(k)| ≤ (1 + |kb|)−NC(N,φ).

Proof: See Ref. Franco and Polito (2004) �

Lemma 4.2. By replacing Gm,0
L by Gm,n

L in the Lemma 4.1, then the following
estimate holds:

|φ̂u(k, θ, θ̄ )| ≤ (1 + |kb|)−NC(N,φ(γ ))‖θ1‖‖θ̄1‖ · · · ‖θn‖‖θ̄n‖.

Proof: See ref. Franco and Polito (2004) �

Combining the results above, we have proved:

Theorem 4.3. The singularities of a superdistribution u are located at specific
values of the body of x, the coordinates of the physical spacetime, independently
of the odd coordinates.

We sum up the preceding discussion as follows:

Definition 4.4. (Wavefront Set of a Superdistribution). The wavefront set WF (u)
of a superdistribution u in a superspace M is the complement of the set of all
regular directed points in the cotangent bundle T ∗M0, where M0 = ε(M) is the
body of superspace, excluding the trivial point kb = 0.

Remark 4.1. A direction kb for which the Fourier transform of a superdistri-
bution u shows to be of fast decrease is called to be a regular direction of û.
Therefore, in order to determine whether (xb, kb) belongs to the wavefront set
of u one must first to localize u around xb, next to obtain Fourier transform û

and finally to look at the decay in the direction kb. Hence, the wavefront set not
only describes the set of points where a superdistribution is singular, but it also
localizes the frequencies that constitute these singularities.

There is a more precise version of Definition 4.4. As we have seen in Sec-
tion 3 all of the foregoing definitions and statements about supermanifolds may be
converted into corresponding definitions and statements about ordinary manifolds,
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since associated with a supermanifold M of dimension (m, n) is a family of ordi-
nary manifolds, of dimensions N = 2L−1(m + n), (L = 1, 2, . . .). The resulting
manifold is called the Lth skeleton of M and denoted by SL(M) (DeWitt, 1992).
With the aid of the family of skeletons we can define the pushforward (or direct im-
age) of a superdistribution. Let X ⊂ SL(M) and Y ⊂ M0 be open sets and let ε be
the natural projection from SL(M) (or M) to M0, the body map. If we introduce
local coordinates x = (x1, . . . , xN ) in X, then Y is defined by xb = (x1, . . . , xm).
There is a local relationship between the body and the skeletons given by

SL(X)
diff.= Y × R

2L−1(m+n)−m.

Now, let u be a superdistribution on X, then the pushforward ε∗u defined by
ε∗u(ϕ) = u(ε∗ϕ), ϕ ∈ C∞

0 (Y ), it is a superdistribution on Y . Using these concepts,
we can establish the following

Corollary 4.5. Let ε : X ⊂ SL(M) → Y ⊂ M0 be the body projection, and let
u ∈ D

′(X). Then
WF (ε∗u) ⊂ {(xb, kb) ∈ T ∗M0\0|∃ x ′ = (xm+1, . . . , xN ′ ), (xb, x

′, kb, 0) ∈
WF (u)} where N ′ = 2L−1(m + n) − m.

Proof: See Ref. Franco and Polito (2004) �

5. CONCLUSIONS

We have introduced a notion of superdistribution in superspace which seems
to have some advantages: by exploring the functorial relations between a G∞-
superspace and a family of Banach manifolds C∞ we define the space of superdis-
tributions as the dual of the test function space of C∞-functions with compact
support endowed with a suitable topology on Banach spaces. In particular, Wight-
man superfunctions and superpropagators, which appear in the supersymmetric
quantum field theory, can be treated as our superdistributions. We have also ob-
tained useful results on the singularity structure of such objects, here analysed
in the context of the development of the potent mathematical tool of microlocal
analysis and characterized in terms of the its wavefront set. Our analysis represents
only the first step towards a more interesting physically situation: the perturbative
treatment of interacting quantum superfield models, in particular the formulation
of renormalization theory on curved supermanifolds.
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APPENDIX. MICROLOCAL ANALYSIS: REVIEW OF SOME
BASIC IDEAS

In this appendix we briefly recall some standard facts on microlocal analy-
sis. The key point of the microlocal analysis is the transference of the study of
singularities of distributions from the configuration space only to the rather phase
space, by exploring in frequency space the decay properties of a distribution at in-
finity and the smoothness properties of its Fourier transform. As it is well-known
(Hörmander, 1990; Reed and Simon, 1975), a distribution of compact support,
u ∈ E ′(Rn), is a smooth function if, and only if, its Fourier transform, û, rapidly
decreases at infinity (i.e., as long as supp u does not touch the singularity points).
By a fast decay at infinity, one must understanding that for all positive integer N

exists a constant CN , which depends on N , such that

|̂u(k)| ≤ (1 + |k|)−NCN, ∀N ∈ N; k ∈ R
n. (A.1)

If, however, u ∈ E ′(Rn) is not smooth, then the directions along which û does not
fall off sufficiently fast may be adopted to characterize the singularities of u.

For a distributions does not necessarily of compact support, still we can
verify if its Fourier transform rapidly decreases in a given region V through
the technique of localization. More precisely, if V ⊂ X ⊂ R

n and u ∈ D′(X),
we can restrict u to a distribution u|V in V by setting u|V (φ) = u(φ), where
φ is a smooth function with support contained in a region V . The distribution
φu can then be seen as a distribution of compact support on R

n. Its Fourier
transform will be defined as a distribution on R

n, and must satisfy, in absence
of singularities in V ⊂ R

n, the property (A.1). From this point of view, all de-
velopment is local in the sense that only the behaviour of the distribution on the
arbitrarily small neighbourhood of the singular point, in the configuration space, is
relevant.

Let u ∈ D′(Rn) be a distribution and φ ∈ C∞
0 (V ) a smooth function with

support V ⊂ R
n. Then, φu has compact support. The Fourier transform of φu

produces a smooth function in frequency space.

Lemma A.1. Consider u ∈ D′(Rn) and φ ∈ C∞
0 (V ). Then φ̂u(k) = u(φe−ikx).

Moreover, the restriction of u to V ⊂ R
n is smooth on V if, and only if, for every

φ ∈ C∞
0 (V ) and each positive integer N there exist a constant C(φ,N), which

depends on N and φ, such that |φ̂u(k)| ≤ (1 + |k|)−NC(φ,N ) for all N ∈ R and
k ∈ R

n.

If u ∈ D′(Rn) is singular in x, and φ ∈ C∞
0 (V ) is φ(x) �= 0; then φu is also

singular in x and has compact support. However, in some directions in k-space
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φ̂u until will be asymptotically limited. This is called the set of regular directions
of u.

Definition A.2. Let u(x) be an arbitrary distribution, not necessarily of compact
support, on an open set X ⊂ R

n. Then, the set of pairs composed by singular
points x in configuration space and by its associated nonzero singular directions k
in Fourier space

WF (u) = {(x, k) ∈ X × (Rn\0)|k ∈ �x(u)}, (A.2)

is called wavefront set of u.�x(u) is defined to be the complement in R
n\0 of the

set of all k ∈ R
n\0 for which there is an open conic neighbourhood M of k such

that φ̂u rapidly decreases in M, for |k| → ∞.

Remark. We will now collect some basic properties of the wavefront set:

(1) The WF (u) is conic in the sense that it remains invariant under the action
of dilatations, i.e., when we multiply the second variable by a positive
scalar. This means that if (x, k) ∈ WF (u) then (x, λk) ∈ WF (u) for all
λ > 0.

(2) From the definition of WF (u), it follows that π1(WF (u)) → x is the
projection onto the first variable, by consisting of those points that have
no neighbourhood wherein u is a smooth function. The projection onto the
second variable, π2(WF (u)) → �x(u), is the cone around k attached to
a such point denoting the set of high-frequency directions responsible for
the appearance of a singularity at this point.

(3) The wavefront set of a smooth function is the empty set.
(4) For all smooth function φ with compact suport WF (φu) ⊂ WF (u).
(5) For any partial linear differential operator P , with C∞ coefficients, we

have

WF (Pu) ⊆ WF (u).

(6) If u and v are two distributions belonging to D′(Rn), with wavefront sets
WF (u) and WF (v), respectively; then the wavefront set of (u + v) ∈
D′(Rn) is contained in WF (u) ∪ WF (v).

(7) If U,V are open set of R
n, u ∈ D′(V ), and χ : U → V a diffeomor-

phism such that χ∗u ∈ D′(U ) is the distribution pulled back by χ , then
WF (χ∗u) = χ∗WF (u).

We emphasize that a number of operations, not possible in general, become
feasible for distributions under special assumptions on their wavefront set, such
as taking products. As a result of this, the wavefront set applies to theories which
are formulated in terms of pointlike fields. In the naive perturbative scheme of
quantum field theories, one encounters formal products of fields which are a priori
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ill-defined. This difficulty lies at the heart of renormalization theory. The latter
starts from the observation that products of fields (operator-valued distributions)
are well-defined on a subset which does not contain the diagonal (all coinciding
points, or the zero section). Renormalization consists then in the continuation of
products of distributions to the whole space.

In order to give precise statements to the product of these fields, we appeal
to the criterion below.

Theorem A.3. (Hörmander’s Criterion). Let u and v be distributions; if the
wavefront set of u and v are such that

(x, 0) �∈ WF (u) ⊕ WF (v) = {(x, k1 + k2)|(x, k1) ∈ WF (u), (x, k2) ∈ WF (v)},
then the product uv exists and WF (uv) ⊂ WF (u) ∪ WF (v) ∪ (WF (u) ⊕
WF (v)).

Hence, the product of the distributions u and v is well-defined in x, if u, or v,
or both distributions are regular in x. Otherwise, if u and v are singular in x, the
product can still exist if, the sum of the second components of WF (u) and WF (v)
related to x can be linearly combined to give zero only by a trivial solution.

Example. The distributions u, v ∈ D′(R), u(x) = 1
x+iε

and v(x) = 1
x−iε

, with
the Heavyside distributions û(k) = 2πiθ (−k) and v̂(k) = −2πiθ (k) as their
Fourier transforms, have the following wavefront sets:

WF (u) = {(0, k)|k ∈ R
−\0}, WF (v) = {(0, k)|k ∈ R

+\0}.

Thus, from the Hörmander’s Criterion one finds that there exist the powers
of un and vn. On the other hand, the products between u and v do not match the
above criterion and do not exist, indeed. The example clearly indicates that one
can multiply distributions even if they have overlapping singularities, provided
their wavefront sets are in favorable positions. Such an observation is significant
because it makes clear that the problem is not only where the support is, but in
which directions the Fourier transform is not rapidly decreasing!

Another result, which we merely state, is needed to complete this briefing on
microlocal analysis.

Theorem A.4. (Wavefront set of pushforwards of a distribution). Let f : X → Y

be a submersion, and let u ∈ E ′(X). Then

WF (f∗u) ⊂ {(f (x), η)|x ∈ X, (x,tf ′
xη) ∈ WF (u) or tf ′

xη = 0},
where t f ′

x denotes the transpose matrix of the Jacobian matrix f ′
x of f .
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